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Short Note
Effective Hydraulic Conductivity and Transmissivity
for Heterogeneous Aquifers

Daniel M. Tartakovsky,? Alberto Guadagnini,?
and Laura Guadagnini®

Regional scale models of groundwater flow and transport often employ domain discretizations with
grid blocks larger than typical scales of field data. For heterogeneous formations, this difference
in scales is often handled by using effective (upscaled) parameters. We investigate the problem of
upscaling hydraulic conductivity and transmissivity from a small scale of measurement to a larger
scale of grid blocks. Transmissivity statistics is expressed in terms of statistics of hydraulic conductivity,
and expressions for the effective (upscaled) hydraulic conductdfyand transmissivityT g for

steady state flow in confined heterogeneous aquifers are derived by means of stochastic averaging and
perturbation analysis. These expressions reveal that the commonly used r@lgtierBK ofr, where

B is the confined aquifer thickness, is not generally valid.
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INTRODUCTION

Models for interpreting experimental data usually assume that, at least on a mea-
surement scale, flow takes place in a homogeneous environment. Under this
assumption, hydraulic conductivik/(x) represents a quantity averaged over some
support volumew, centered around point= (X1, X2, X3)". If the support vol-
umew; is comparable to an aquifer thickne&{x1, x,) (as is the case for fully
penetrating wells), then transmissivity associated with this support volume is
defined asBK. However, K is usually associated with much smaller measure-
ment volumes, and local transmissivity of heterogeneous formations is defined as
T= fOB K dxs, wherexs is the vertical coordinate. Thus, transmissivity represents
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Figure 1. Schematic representation of support scales for hydraulic conductiyity
and transmissivityo, within a grid block2 (lengthL and thicknes®) of a confined
aquifer.

a quantity averaged over some local observation sealew (Fig. 1), so that the
smaller scale variability of hydraulic conductivity is neglected.

Effective, or upscaled, parameters are often used for numerical modeling of
groundwater flow and transport in heterogeneous aquifers. Such models require
assigning hydraulic conductivities or transmissivities to large grid blocks, while
experimental data are usually available at a much smaller scale of core or well-log
measurements. These parameters can be obtained by standard inverse methods,
which is equivalent to the common groundwater modeling practice of taking the
deterministic form of Darcy’s law for granted, associating it with some effective
or equivalent property and estimating its spatial distribution by model calibration
against measured heads and fluxes (Zimmerman and others, 1998). A detailed
discussion of these methodologies and their drawbacks is given by Guadagnini
and Neuman (1998). An alternative approach, which we pursue in this paper,
consists of estimating effective or equivalent parameters by stochastically derived
analytical formulae (e.g., Matheron, 1967; Dagan, 1989; Paleologos, Neuman, and
Tartakovsky, 1996; Tartakovsky and Neuman, 1998).

It was demonstrated numerically (Dykaar and Kitanidis, 1993) and proven
analytically (Desbarats and Bachu, 1994) that the accepted method of defining
transmissivity as a vertical average,

B
T (%, %) = /O K (x) ds 1)

overestimates flow rates in the horizontal plane. To overcome this problem,
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Desbarats and Bachu (1994) employed a generalized power averaging (Desbarats,
1992, 1994)

B
T (%0, %) = /0 K(x) d¥g @

where w is a fitting parameter. While useful for many practical applications,

(2) lacks physical justification, and estimating an approprateay be difficult
(Desbarats and Bachu, 1994). Dagan (1989, p. 357) suggested another generaliza-
tion of (1),

T = BKest 3

whereKgx is the effective hydraulic conductivity. For perfectly layered aquifers,
(3) reduces to (1) exactly, and these two definitions are practically identical when
B is “much larger” than the vertical correlation scdle(Dagan, 1989, p. 358).

It remains to answer the question of how large is large enough, and to provide a
simple closed-form expression 8¢ in the presence of boundaries.

In this paper, we investigate the relationship between the effective (upscaled)
hydraulic conductivityKes and transmissivityTes for randomly heterogeneous
confined aquifers of either deterministically or randomly varying thickness. To
facilitate this comparison, we start by expressing statistics of transmissivity in
terms of conductivity statistics.

TRANSMISSIVITY STATISTICS

It is customary to treat hydraulic conductivity as a random field (e.g.,
Dagan, 1989) characterized by a joint (multivariate) probability density function
or, equivalently, its joint ensemble moments. Thus, hydraulic conducti/t)
varies not only across the real space coordinatd®it also in probability space
(this variation may be represented by another “coordingte/hich, for simplicity,
we suppress). Whereas spatial moments are obtained by sarfbingn real
space (across), ensemble moments are defined in terms of samples collected in
probability space (acro$s.

In line with the current trend in stochastic hydrogeology, we assume that log
hydraulic conductivityf (X) = In K (x) forms a statistically homogeneous Gaussian
field with constant mear{Y) and varianceo? = (Y'(x)Y’(x)), and two-point
Gaussian anisotropic covariance functi®(x, y) = opy(r),

2 _ (- Y1) + (X2 — ¥2)? | (X3 — ya)?

2
p=e" Iz . @
h v
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wherel, andl, are the horizontal and vertical correlation scales, respectively. This
particular choice of the correlation functigr is for mathematical convenience
only and is not crucial to the methodology used in this paper.

Our aim is to express the statistics of log transmissidity In T in terms
of the statistics ofr. (The statistics of random transmissivilyis derived in the
Appendix.) If a spatial distribution of the aquifer thickneBéx;, x,) is known
with certainty (deterministic), first-order (n2) approximations of the mean log
transmissivity(Z), geometric meaiig = exp((T)), variancea%, and correlation
function pz are given by (Appendix)

02
(Z) = In(BKg) + (1 — /3)7Y (5)

TG=B[1—|—1;'803]KG (6)

and

(X1 — y2)? + (X2 — y2)?

0% =poc  pz(rn) = exp(—rd) 2= =z (7

h

respectively. Her&K ¢ = exp((K)) is the geometric mean d&f,
B(r) = A3[Vma, terf(r,t) + exp(—i, ) — 1] (8)

anda, =I,/B.

Thus the constructed random field of log transmissi¥iig dependent upon a
numbern., of the vertical correlation scalésin the total thicknes8 of an aquifer.
This dependence manifests itself through the correction f@tqn, which is de-
picted in Figure 2. Becaugke< 1, it follows from (7) that the log transmissivi@/,
as inferred from the given statistics of the log conductivityexhibits smaller spa-
tial variation thanY. A lack of the vertical correlation of hydraulic conductivity
(I, =0) results ino2 =0.

A procedure for deriving the ensemble mean and (co)varian@-efin T
for randomly varyingB is outlined in the Appendix.

It is clear that if T is defined on a support volume, through the spatial
averaging (1) oK (associated with a smaller scalg), log-normality ofK does
not imply log-normality of T. Alternatively, if transmissivity and conductivity
are defined on the same support scale, theaBK, and unlessB is random,
log-normality of K also implies log-normality of .
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Figure 2. Correction factop as a function of the number of vertical
correlation scalek, in the total thicknes8 of an aquifer.

EFFECTIVE TRANSMISSIVITY VS. EFFECTIVE CONDUCTIVITY

Consider upscaling of Darcy’s lag,= —K Vh (g being flux anch being hy-
draulic head), from its support scade to a larger grid-block2 (Fig. 1). Following
Dagan (1989) and Neuman and Orr (1993), we define effective conductivity
Kesf Of @ randomly heterogeneous grid-blogkas a coefficient of proportion-
ality in the mean flow equationg) = —Ke¢J, where(q) is the mean flux and
J = (Hz — Hj)/L is the mean hydraulic head gradient. Up to first orderdnit
is given by (Paleologos, Neuman, and Tartakovsky, 1996)

Keit(X) _ o[ 1 _ 9°Ga(x, y)
Ko = 1+0Y[§ - Kd(x)i| kg(X) = /Qd PY(V)WCIY ()]

whereGy is the Green’s function fad-dimensional Laplace equation§hsubject

to appropriate homogeneous boundary conditions. The dimensiodaditgeter-
mined by dimensionality of flow. Paleologos, Neuman, and Tartakovsky (1996) and
Tartakovsky and Neuman (1998) demonstrated that;dimensionsy monoton-
ically increases from 0 to/H with the size of2 relative to the correlation scalks
andl,. In particularx reaches 90% of its asymptotic value gBlatA, = A, =0.1,
wherein =1y /L.
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Defining effective transmissivit¥e in a similar manner leads to

B0 1o d k0] leaw= [ 020

32Gg-1(X. y) d

0X10Y1
10)

with kg_1 ~ 1/(d — 1) atr,, = 0.1. These findings are in agreement with numerical
results of Dykaar and Kitanidis (1993). These unambiguous definitions of the
effective conductivityK ¢+ and transmissivityle clearly conserve mean Darcian
flux through the grid blockz.

Whereas an anisotropy ratigy |, and a number of vertical correlation scales
in the aquifer thickness, are determined by the physical processes, the choice of
a grid-block sizeL in the horizontal planex(, x») is up to a modeler. Our analysis
shows that one can use well-established values for upscaled parameters (Matheron,
1967; Gelhar and Axness, 1983; and Dagan, 1989),

Keff_l_i_U_\? Teff_

Ke 6 T 1 (11)

so long as\, = A, < 0.1. If the size of a grid block is large enough to satisfy this
criteria, butiy # A, Equation 30 of Tartakovsky and Neuman (1998) might be
used instead.

The effective transmissivit¥e in (10) is expressed in terms of the statistical
moments of log transmissivitg. These can be obtained either directly from field
measurements of transmissivity, or from the statistics of log conductivity.

To facilitate the comparison between effective conductivity and transmissivity, we
employ the latter approach.

Substituting (6) into (11) yields an expression for the effective transmissivity
in terms of the statistical moments of log conductivity,

]__
Teit = B[1+ TﬂoYZ] Ko (12)

It follows from (11) and (12) that, for the traditional practice of setfipg= BKex
to be valid, it is necessary that=2/3 or (see Fig. 2)., ~ 0.53. The latter clearly
contradicts the condition for validity of (11),, < 0.1, so thafle¢ % BKeg.
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APPENDIX: STATISTICAL MOMENTS OF LOG-TRANSMISSIVITY
If log-conductivity Y is a Gaussian and statistically homogeneous random

field, the definition ofT leads to an exact expression for its m¢ahin arandomly
heterogeneous aquifer of deterministically varying thickrigss

B 2
(T)y=¢e" /0 (€"®)dxs = BKg exp<%y> (A1)

and a first-order (i) approximation of its covariance functio@r(rn)=
(T'(x1, X2) T'(Y1, ¥2)),

B B B B
Crtm = [ [ (00K @) ey, = Ka? [ [ vy dradys + O(e
(A2)
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Substituting (4) into (A2) yields

Cr(rn) = K&ova(, B)or(rn) (A3)
wherepr (rn) = exp(-rg), rf =[(x1 — y1)* + (x2 — y2)l/I%, and

40 ) ) o

L

First-order (ino?) approximation of the transmissivity variane€ is obtained
from (A3) by setting’, =0.

Ensemble mean of log-transmissivit¥) is derived through the Taylor ex-
pansion

1 2 T 3
(Z) = (nT) =In(T) - 5 (‘;T)z + o<( <(TX>13) >> (A5)

Substituting (A1) and (A3) into (A5), and retaining the terms upr{o leads
directly to (5). It follows from (5) that

Te = exp((Z)) = BKg exp[l ; & 03} (A6)

Approximating (A6) up to first order inZ gives (6).

To derive an expression for the (co)variance of log-transmissivity, we no-
tice that, up to first order i2, Cr(rn) = T2Cz(rn). It then follows from (A3)
that T2Cz(rn) = KZo2ap(rn). Utilizing (A6), and retaining the terms up tef,
yields (7).

When the thicknesB of a confined aquifer varies randomly in space, (Al)
takes the form

(T) = Kg f(B) f(B) = </OBeY'(X)dx3> (A7)

RepresentingB = (B) + B’, expandingf (B) in Taylor's series abou¢B), and
retaining the terms of the first order in the variaméeof B, yields

2
(M) = (@1Ke exp( 5 ) + (K (EDE () »9)
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The last term in (A8) represents cross-covariance between aquifer’s thidRness
and hydraulic conductivit)k evaluated at the average elevation of the aquifer top.

If these two quantities are uncorrelated [as data of Desbarats and Bachu (1994)
indicate], then (A8) reduces to (Al) upon replaciBgwith its expected value

(B). Analogously, one can obtain expressions for the second ensemble moment
of Z.



